Unit 9 Outline – Sequences and Series

Thursday 1/23 BLOCK DAY	Today's Topic: Introduction to Infinite Sequences and their limits; Investigate recursive sequences		
Key Idea:			
Let $\{a_n\}$ be a sequence	e of real numbers.		
Possibilities:			
1) If $\lim_{n\to\infty} a_n = \infty$,	then $\{a_n\}$ diverges to infinity		
2) If $\lim_{n \to \infty} a_n = -\infty$, then $\{a_n\}$ diverges to negative infinity		
3) If $\lim_{n\to\infty} a_n = c$, a	3) If $\lim_{n\to\infty} a_n = c$, an finite real number, then $\{a_n\}$ converges to c		
4) If $\lim_{n\to\infty} a_n$ oscillates between two fixed numbers, then $\{a_n\}$ diverges by oscillation			
In-Class Examples: W	rite out the first 4 terms of the following sequences and, if they converge, find the limit:		
1. $a_n = \frac{1}{n}$ 2. $a_n =$	$= \frac{n+1}{2n+1} \qquad 3. \ a_n = \frac{n-1}{n} \qquad 4. \ a_n = 3 \qquad 5. \ a_n = (-1)^{n+1} \frac{1}{n} \qquad 6. \ a_n = (-1)^{n+1} \left(\frac{n-1}{n}\right)$		
Write the first 6 terms of	the sequences:		
7. $x_1 = 1$; $x_n = x_{n-1} + (2$	$(n+1)$ 8. $a_1 = 1; a_n = a_{n-1} + \left(\frac{1}{2}\right)n$		
Homework: Worksheet	72		

Monday 1/27	Onday 1/27 Today's Topic: Find the convergence or divergence of an infinite sequence; To find the limit of a convergent sequence		o find the limit of a		
In-Class Examples: If $a_n \to L$ as $n \to \infty$, then $f(a_n) \to f(L)$					
Write out the first 4 terms of the following sequences and, if they converge, find the limit:					
1. $a_n = \frac{-1}{n}$ 2. $a_n =$	$=\frac{4-7n^6}{n^6+3}$	3. $a_n = \frac{n^3 + 5n}{n^4 - 6}$	4. $a_n = \frac{n^2 - 5}{n+1}$	$5. a_n = \frac{5n}{2^n}$	$6. \ a_n = \frac{n!}{(n+2)!}$
Common Limits			Homework: Workshe	eet 73	
1. $\lim_{n \to \infty} \frac{\ln n}{n} = 0$ 2. $\lim_{n \to \infty} \sqrt[n]{n} = 1$ 3. $\lim_{n \to \infty} x^{1/n} = 1$ 4. $\lim_{n \to \infty} x^n = 0$ (x 5. $\lim_{n \to \infty} \left(1 + \frac{x}{n}\right)^n = e^x$ 6. $\lim_{n \to \infty} \frac{x^n}{n!} = 0$ (A In formulas (3)-(6), x rem $n \to \infty$.	x > 0) (Any x) (Any x) (Any x) mains fixed as				

Tuesday 1/28 Today's Topic: An introduction to infinite series
n-Class Examples:
. Given the series $\sum_{n=1}^{\infty} \frac{3}{2^n}$, write the first 6 terms of the sequence of partial sums. Do you think this series converges or
iverges?
. Given the series $\sum_{n=1}^{\infty} \left(\frac{3}{2}\right)^n$, write the first 6 terms of the sequence of partial sums . Do you think this series converges or
iverges?
. Given the series $\sum_{n=1}^{\infty} \frac{n}{n+1}$, write the first 6 terms of the sequence of partial sums. Do you think this series converges or
iverges?
Iomework: None

Homework: Worksheet 74

Friday 1/31	Today's Topic: Use the Integral Test for convergence of an infinite series;	
Integral Test		
If f is D ecreasing, C on	ntinuous, and Positive for $x \ge 1$ AND $a_n = f(x)$, then $\sum_{n=1}^{\infty} a_n$ and $\int_1^{\infty} f(x) dx$ either	
BOTH converge or div	verge.	
Note 1: This does not Note 2: The function r	mean that the series converges to the value of the definite integral. need only be decreasing for all $x > k$ for some $k \ge 1$.	
If the series converges	is to S, then the remainder, $R_n = S - S_n $ is bounded by $0 \le R_n \le \int_n^\infty f(x) dx$. This	
means that $S_n \leq S \leq S_n$	$_{n}+R_{n}$.	
In-Class Examples: De	termine if each series converges or diverges.	
1. $\sum_{n=1}^{\infty} \frac{n}{e^{n^2}}$	2. $\sum_{n=1}^{\infty} \frac{1}{\sqrt[3]{n}}$ 3. $\sum_{n=1}^{\infty} \frac{n}{n^2 + 1}$ 4. $\sum_{n=1}^{\infty} \frac{1}{n^2 + 1}$	
Homework: Worksheet	.75	

Monday 2/3	Today's Topic: Review for Test
In-Class Examples: None	
Homework: Worksheet 76	

Tuesday 2/4	Today's Topic: Review for Test
In-Class Examples: No	one
Homework: Worksheet 77	

Wednesday 2/5	Today's Topic: Our first test on Sequences and Series
In-Class Examples: None	
Homework: Exam	